Skip to contents

A tibble of simulated biomarker measurements with missing entries. Each row corresponds to one observation (indexed by index), and the remaining columns are the measured biomarker values, some of which are set to NA to demonstrate imputation workflows.

Usage

df_missing

Format

A tibble with 8,000 rows and 30 variables:

index

Integer. Row identifier imported from data_raw/df_missing.csv.

Age, Salary, ZipCode10001-ZipCode30003

Demographic columns. Omit from selection of validation set. No missingness

Y11, ..., Y55

Simulated Biomarker columns, have missingness

Source

Imported from data_raw/df_missing.csv, then renamed ...1index.

Examples

data(df_missing)
str(df_missing)
#> spc_tbl_ [8,000 × 31] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
#>  $ index       : num [1:8000] 0 1 2 3 4 5 6 7 8 9 ...
#>  $ Age         : num [1:8000] 11.04 9.73 11.38 13.56 9.54 ...
#>  $ Salary      : num [1:8000] 6.37 5.91 6.64 5.9 6.13 ...
#>  $ ZipCode10001: num [1:8000] 0 1 0 0 1 1 1 0 0 0 ...
#>  $ ZipCode20002: num [1:8000] 1 0 1 0 0 0 0 1 1 0 ...
#>  $ ZipCode30003: num [1:8000] 0 0 0 1 0 0 0 0 0 1 ...
#>  $ Y11         : num [1:8000] -4.05 0.546 NA -10.608 0.358 ...
#>  $ Y12         : num [1:8000] NA NA NA NA -16.5 ...
#>  $ Y13         : num [1:8000] NA -12.2 -20.4 NA -11.3 ...
#>  $ Y14         : num [1:8000] -14.37 -7.72 -15.13 -14.21 NA ...
#>  $ Y15         : num [1:8000] -17.6 NA -17.3 -21.3 NA ...
#>  $ Y21         : num [1:8000] NA -7.47 -18.45 -21.97 -7.58 ...
#>  $ Y22         : num [1:8000] NA NA NA NA -27.6 ...
#>  $ Y23         : num [1:8000] -35.8 -25.9 -34.4 -40.2 NA ...
#>  $ Y24         : num [1:8000] -28.1 -17.2 -27.3 -26.3 NA ...
#>  $ Y25         : num [1:8000] -30.2 -18.7 -28.8 -33.4 -18.6 ...
#>  $ Y31         : num [1:8000] -1.63 4.36 -2.17 -7.48 8.1 ...
#>  $ Y32         : num [1:8000] NA NA NA NA -13.6 ...
#>  $ Y33         : num [1:8000] -16.77 -10.93 -17.19 -25.31 -9.83 ...
#>  $ Y34         : num [1:8000] -10.69 -5.89 -10.49 NA NA ...
#>  $ Y35         : num [1:8000] -13.9 -6.09 -12.29 -15.43 -2.96 ...
#>  $ Y41         : num [1:8000] -0.905 2.625 NA -2.825 3.617 ...
#>  $ Y42         : num [1:8000] NA NA NA NA -4.62 ...
#>  $ Y43         : num [1:8000] NA -5.78 -7.22 -8.29 -3.86 ...
#>  $ Y44         : num [1:8000] -3.69 -1.38 -3.35 -2.4 NA ...
#>  $ Y45         : num [1:8000] -5.68 -2.33 -6.9 NA -1.5 ...
#>  $ Y51         : num [1:8000] 2.588 6.081 2.531 0.139 NA ...
#>  $ Y52         : num [1:8000] NA NA NA NA -3.34 ...
#>  $ Y53         : num [1:8000] -4.68 -2.29 -5.43 -5.73 -1.92 ...
#>  $ Y54         : num [1:8000] -2.248 -0.887 -1.33 -1.64 NA ...
#>  $ Y55         : num [1:8000] -2.679 0.563 -2.324 -4.446 0.103 ...
#>  - attr(*, "spec")=List of 3
#>   ..$ cols   :List of 31
#>   .. ..$ ...1        : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Age         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Salary      : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ ZipCode10001: list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ ZipCode20002: list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ ZipCode30003: list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y11         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y12         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y13         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y14         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y15         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y21         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y22         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y23         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y24         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y25         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y31         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y32         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y33         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y34         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y35         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y41         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y42         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y43         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y44         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y45         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y51         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y52         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y53         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y54         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ Y55         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   ..$ default: list()
#>   .. ..- attr(*, "class")= chr [1:2] "collector_guess" "collector"
#>   ..$ delim  : chr ","
#>   ..- attr(*, "class")= chr "col_spec"
#>  - attr(*, "problems")=<externalptr> 
summary(df_missing)
#>      index           Age             Salary       ZipCode10001   
#>  Min.   :   0   Min.   : 4.782   Min.   :5.000   Min.   :0.0000  
#>  1st Qu.:2000   1st Qu.: 8.732   1st Qu.:5.338   1st Qu.:0.0000  
#>  Median :4000   Median : 9.986   Median :5.700   Median :0.0000  
#>  Mean   :4000   Mean   :10.198   Mean   :5.819   Mean   :0.3285  
#>  3rd Qu.:5999   3rd Qu.:11.440   3rd Qu.:6.169   3rd Qu.:1.0000  
#>  Max.   :7999   Max.   :21.929   Max.   :8.959   Max.   :1.0000  
#>                                                                  
#>   ZipCode20002     ZipCode30003         Y11                Y12        
#>  Min.   :0.0000   Min.   :0.0000   Min.   :-66.3324   Min.   :-66.84  
#>  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:-11.1297   1st Qu.:-22.37  
#>  Median :0.0000   Median :0.0000   Median : -0.4072   Median : 48.60  
#>  Mean   :0.3371   Mean   :0.3344   Mean   : -2.8224   Mean   : 22.23  
#>  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:  7.2439   3rd Qu.: 58.35  
#>  Max.   :1.0000   Max.   :1.0000   Max.   : 26.2178   Max.   :112.32  
#>                                    NA's   :3122       NA's   :3118    
#>       Y13              Y14              Y15              Y21          
#>  Min.   :-74.61   Min.   :-49.70   Min.   :-46.87   Min.   :-78.8702  
#>  1st Qu.:-17.25   1st Qu.:-11.98   1st Qu.:-11.56   1st Qu.:-22.0992  
#>  Median : 72.43   Median : 69.08   Median : 72.28   Median : -9.4794  
#>  Mean   : 42.75   Mean   : 55.55   Mean   : 63.77   Mean   :-12.2318  
#>  3rd Qu.: 94.71   3rd Qu.:118.98   3rd Qu.:134.28   3rd Qu.: -0.1001  
#>  Max.   :141.59   Max.   :184.63   Max.   :212.94   Max.   : 19.8433  
#>  NA's   :3110     NA's   :3129     NA's   :3141     NA's   :3135      
#>       Y22              Y23              Y24              Y25        
#>  Min.   :-91.64   Min.   :-98.82   Min.   :-68.73   Min.   :-67.74  
#>  1st Qu.:-34.60   1st Qu.:-29.16   1st Qu.:-22.44   1st Qu.:-21.76  
#>  Median : 47.36   Median : 74.15   Median : 71.14   Median : 73.21  
#>  Mean   : 16.04   Mean   : 39.92   Mean   : 55.14   Mean   : 63.86  
#>  3rd Qu.: 57.56   3rd Qu.: 99.94   3rd Qu.:128.49   3rd Qu.:145.23  
#>  Max.   :114.18   Max.   :151.39   Max.   :195.89   Max.   :231.72  
#>  NA's   :3094     NA's   :3098     NA's   :3146     NA's   :3106    
#>       Y31                Y32              Y33              Y34         
#>  Min.   :-61.8386   Min.   :-64.36   Min.   :-77.52   Min.   :-44.738  
#>  1st Qu.:-14.2448   1st Qu.:-16.84   1st Qu.:-12.68   1st Qu.: -6.078  
#>  Median : -0.4389   Median : 59.39   Median : 80.92   Median : 79.149  
#>  Mean   : -2.3836   Mean   : 35.48   Mean   : 54.80   Mean   : 66.597  
#>  3rd Qu.: 10.5156   3rd Qu.: 69.12   3rd Qu.:101.36   3rd Qu.:124.148  
#>  Max.   : 33.9299   Max.   :118.72   Max.   :153.84   Max.   :198.039  
#>  NA's   :2067       NA's   :2056     NA's   :2013     NA's   :2051     
#>       Y35               Y41                Y42               Y43         
#>  Min.   :-43.026   Min.   :-25.0276   Min.   :-26.607   Min.   :-21.134  
#>  1st Qu.: -5.815   1st Qu.: -6.4226   1st Qu.: -7.992   1st Qu.: -5.286  
#>  Median : 80.878   Median : -0.0618   Median : 27.032   Median : 37.099  
#>  Mean   : 73.133   Mean   : -1.0265   Mean   : 16.618   Mean   : 25.381  
#>  3rd Qu.:138.746   3rd Qu.:  4.7805   3rd Qu.: 32.320   3rd Qu.: 46.395  
#>  Max.   :226.577   Max.   : 14.2158   Max.   : 59.684   Max.   : 72.119  
#>  NA's   :2054      NA's   :2032       NA's   :2022      NA's   :2013     
#>       Y44               Y45               Y51                Y52         
#>  Min.   :-17.799   Min.   :-15.073   Min.   :-19.8408   Min.   :-20.575  
#>  1st Qu.: -2.974   1st Qu.: -2.927   1st Qu.: -3.6429   1st Qu.: -5.056  
#>  Median : 35.892   Median : 37.450   Median :  1.8005   Median : 24.853  
#>  Mean   : 30.326   Mean   : 33.814   Mean   :  0.9457   Mean   : 16.000  
#>  3rd Qu.: 56.243   3rd Qu.: 63.199   3rd Qu.:  5.8282   3rd Qu.: 29.464  
#>  Max.   : 94.820   Max.   :110.590   Max.   : 14.8720   Max.   : 52.764  
#>  NA's   :2023      NA's   :2086      NA's   :2077       NA's   :2034     
#>       Y53               Y54               Y55         
#>  Min.   :-22.010   Min.   :-16.174   Min.   :-9.8664  
#>  1st Qu.: -2.686   1st Qu.: -0.699   1st Qu.:-0.8639  
#>  Median : 33.748   Median : 32.594   Median :33.7227  
#>  Mean   : 23.584   Mean   : 27.660   Mean   :30.4929  
#>  3rd Qu.: 41.398   3rd Qu.: 49.971   3rd Qu.:55.6098  
#>  Max.   : 65.703   Max.   : 82.862   Max.   :95.5910  
#>  NA's   :1976      NA's   :2047      NA's   :2050