Creates a horizontal schematic diagram of the CISS-VAE architecture, showing
shared and cluster-specific layers. This function wraps the Python
plot_vae_architecture
function from the ciss_vae package.
Usage
plot_vae_architecture(
model,
title = NULL,
color_shared = "skyblue",
color_unshared = "lightcoral",
color_latent = "gold",
color_input = "lightgreen",
color_output = "lightgreen",
figsize = c(16, 8),
save_path = NULL,
dpi = 300,
return_plot = FALSE,
display_plot = TRUE
)
Arguments
- model
A trained CISSVAE model object (Python object)
- title
Title of the plot. If NULL, no title is displayed. Default NULL.
Color for shared hidden layers. Default "skyblue".
Color for unshared (cluster-specific) hidden layers. Default "lightcoral".
- color_latent
Color for latent layer. Default "gold".
- color_input
Color for input layer. Default "lightgreen".
- color_output
Color for output layer. Default "lightgreen".
- figsize
Size of the matplotlib figure as c(width, height). Default c(16, 8).
- save_path
Optional path to save the plot as PNG. If NULL, plot is displayed. Default NULL.
- dpi
Resolution for saved PNG file. Default 300.
- return_plot
Logical; if TRUE, returns the plot as an R object using reticulate. Default FALSE.
- display_plot
Logical; if TRUE, displays the plot. Set to FALSE when only saving. Default TRUE.
Value
If return_plot is TRUE, returns a Python matplotlib figure object that can be further manipulated. Otherwise returns NULL invisibly.
Examples
if (FALSE) { # \dontrun{
# Train a model first
result <- run_cissvae(my_data, return_model = TRUE)
# Basic plot
plot_vae_architecture(result$model)
# Save plot to file
plot_vae_architecture(
model = result$model,
title = "CISS-VAE Architecture",
save_path = "vae_architecture.png",
dpi = 300
)
# Return plot object for further manipulation
fig <- plot_vae_architecture(
model = result$model,
return_plot = TRUE,
display_plot = FALSE
)
} # }